Almost-prime values of reducible polynomials at prime arguments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 Prime values of reducible polynomials , II

1 Supported by National Natural Science Foundation of China, Grant No. 0171046 and the “ 333 Project” Foundation of Jiangsu Province of China. The work was done while first author was visiting the Mathematical Institute of the Hungarian Academy of Sciences. 2 Supported by Hungarian National Foundation for Scientific Research, Grants No. F 026049 and T 30074 3 Supported by Hungarian National Fou...

متن کامل

On generalisations of almost prime and weakly prime ideals

Let $R$ be a commutative ring with identity‎. ‎A proper ideal $P$ of $R$ is a $(n-1,n)$-$Phi_m$-prime ($(n-1,n)$-weakly prime) ideal if $a_1,ldots,a_nin R$‎, ‎$a_1cdots a_nin Pbackslash P^m$ ($a_1cdots a_nin Pbackslash {0}$) implies $a_1cdots a_{i-1}a_{i+1}cdots a_nin P$‎, ‎for some $iin{1,ldots,n}$; ($m,ngeq 2$)‎. ‎In this paper several results concerning $(n-1,n)$-$Phi_m$-prime and $(n-1,n)$-...

متن کامل

On Prime Values of Cyclotomic Polynomials

We present several approaches on finding necessary and sufficient conditions on n so that Φk(x ) is irreducible where Φk is the k-th cyclotomic polynomial.

متن کامل

Prime Values of Polynomials and Irreducibility Testing

In 1857 Bouniakowsky [6] made a conjecture concerning prime values of polynomials that would, for instance, imply that x + 1 is prime for infinitely many integers x. Let ƒ (x) be a polynomial with integer coefficients and define the fixed divisor of ƒ, written d(ƒ), as the largest integer d such that d divides f(x) for all integers x. Bouniakowsky conjectured that if f(x) is nonconstant and irr...

متن کامل

Polynomials with No Small Prime Values

Let /(x) be a polynomial with integer coefficients, and let D(/)-gx.d.{/.(*):*eZ}. It was conjectured by Bouniakowsky in 1857 that if f(x) is nonconstant and irreducible over Z, theii \f(x)\/D(f) is prime for infinitely many integers x. It is shown that there exist irreducible polynomials f(x) with D(f) = 1 such that the smallest integer x for which \f(x)\ is prime is large as a function of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2020

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2019.09.013